Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters
نویسندگان
چکیده
Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules.
منابع مشابه
Multiple-Valued Computing Using Field Emission – Based Carbon Nanotube Controlled Switching
A new carbon nanotube (CNT) based controlled switch is introduced. The new CNT device is a field emission – based device that uses field electron emission from the CNT to implement the functionality of controlled switching. To implement the field emission CNT controlled switch, four field emission CNTs that have single carbon nanotubes as the emitters were tested; two with single-walled CNT and...
متن کاملFocused Ion Beam Fabrication of Individual Carbon Nanotube Devices
Focused ion beam (FIB) techniques have found many applications in nanoscience and nanotechnology applications in recent years. However, not much work has been done using FIB to fabricate carbon nanotube devices. This is mainly due to the fact that carbon nanotubes are very fragile and energetic ion beam from FIB can easily damage the carbon nanotubes. Here we report the fabrication of carbon na...
متن کاملCarbon nanotube electron sources and applications.
In this review we give an overview of the present status of research on carbon nanotube (CNT) field emitters and their applications. Several different construction principles of field-emission devices with CNTs are summarized. The emission mechanism is introduced and a detailed overview is given of the measured emission properties and related topics of CNT electron sources. We give also several...
متن کاملEffect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes
Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman ...
متن کاملStable Field Emitters for a Miniature X-ray Tube Using Carbon Nanotube Drop Drying on a Flat Metal Tip
Stable carbon nanotube (CNT) field emitters for a vacuum-sealed miniature X-ray tube have been fabricated. The field emitters with a uniform CNT coating are prepared by a simple drop drying of a CNT mixture solution that is composed of chemically modified multi-walled CNTs, silver nanoparticles, and isopropyl alcohol on flat tungsten tips. A highly thermal- and electrical-conductive silver laye...
متن کامل